A Magnitude Code Common to Numerosities and Number Symbols in Human Intraparietal Cortex
نویسندگان
چکیده
Activation of the horizontal segment of the intraparietal sulcus (hIPS) has been observed in various number-processing tasks, whether numbers were conveyed by symbolic numerals (digits, number words) or by nonsymbolic displays (dot patterns). This suggests an abstract coding of numerical magnitude. Here, we critically tested this hypothesis using fMRI adaptation to demonstrate notation-independent coding of numerical quantity in the hIPS. Once subjects were adapted either to dot patterns or to Arabic digits, activation in the hIPS and in frontal regions recovered in a distance-dependent fashion whenever a new number was presented, irrespective of notation changes. This remained unchanged when analyzing the hIPS peaks from an independent localizer scan of mental calculation. These results suggest an abstract coding of approximate number common to dots, digits, and number words. They support the idea that symbols acquire meaning by linking neural populations coding symbol shapes to those holding nonsymbolic representations of quantities.
منابع مشابه
Tuning to non-symbolic proportions in the human frontoparietal cortex.
Humans share with many species a non-verbal system to estimate absolute quantity. This sense of number has been linked to the activity of quantity-selective neurons that respond maximally to preferred numerosities. With functional magnetic resonance imaging adaptation, we now show that populations of neurons in the human parietal and frontal cortex are also capable of encoding quantity ratios, ...
متن کاملSpatially invariant coding of numerical information in functionally defined subregions of human parietal cortex.
Macaque electrophysiology has revealed neurons responsive to number in lateral (LIP) and ventral (VIP) intraparietal areas. Recently, fMRI pattern recognition revealed information discriminative of individual numbers in human parietal cortex but without precisely localizing the relevant sites or testing for subregions with different response profiles. Here, we defined the human functional equiv...
متن کاملA labeled-line code for small and large numerosities in the monkey prefrontal cortex.
How single neurons represent information about the magnitude of a stimulus remains controversial. Neurons encoding purely sensory magnitude typically show monotonic response functions ("summation coding"), and summation units are usually implemented in models of numerosity representation. In contrast, cells representing numerical quantity exhibit nonmonotonic tuning functions that peak at their...
متن کاملA Supramodal Number Representation in Human Intraparietal Cortex
The triple-code theory of numerical processing postulates an abstract-semantic "number sense." Neuropsychology points to intraparietal cortex as a potential substrate, but previous functional neuroimaging studies did not dissociate the representation of numerical magnitude from task-driven effects on intraparietal activation. In an event-related fMRI study, we presented numbers, letters, and co...
متن کاملMode-dependent and mode-independent representations of numerosity in the right intraparietal sulcus
In humans, areas around the intraparietal sulcus (IPS) have been found to play a crucial role in coding nonsymbolic numerosities (i.e., number of elements in a collection). In the parietal cortex of monkeys, some populations of neurons were found to respond selectively to sequentially- or simultaneously-presented numerosities, whereas other populations showed similar activation in both modes of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuron
دوره 53 شماره
صفحات -
تاریخ انتشار 2007